陕西方法技巧

首页 > 陕西公务员考试 > 备考资料 > 方法技巧

2020年陕西公务员考试行测答题技巧数学运算中的概率问题

华图教育 | 2020-07-21 18:39

收藏

  2020年陕西公务员考试行测答题技巧数学运算中的概率问题,详细信息请阅读下文!

  例:销售员小刘为客户准备了A、B、C三个方案。已知客户接受方案A的概率为40%。如果接受方案A,则接受方案B的概率为60%,反之为30%。客户如果A或B方案都不接受,则接受C方案的概率为90%,反之为10%,问将3个方案按照客户接受概率从高到低排列,以下正确的是:

  A.A>B>C B.A>C>B C.B>A>C D.C>B>A

  这道题目告诉我们什么呢?说是的客户对于小刘提供的ABC三个方案的接受与否的概率信息,让我们解决每种方案接受的概率大小问题。既然是解决概率,我们要看题干告诉的关于接受A、B、C的概率条件。这时我们可以发现,除A以外,BC方案的接受概率都会随着另外的方案去变化,条件较多,我们整理一下:

  ①接受A为40%;

  ②接受A后,接受B为60%;

  ③不接受A后,接受B为30%;

  ④AB都不接受,接受C为90%;

  ⑤AB中接受了一种或两种,接受C为10%。

  此时我们发现,如果想求B或者C的概率,就要去找到哪些情况下B、C会发生,以B为例,B发生可以是②也可以是③,此时②和③的关系类似于排列组合中的分类,分类的方法数计算用加法,这里概率计算同样用加法,即接受B的概率等于②③概率之和。

  那我们继续分析②,接受A之后,接受B为60%,接受A之后再接受B,在40%的基础上再发生一个60%,类似于排列组合问题中的分步,分步的方法数计算用乘法,这里概率计算同样用乘法,所以②对应的概率为40%×60%=24%。

  同理,③中是不接受A再接受B,概率依旧相乘,为(1-40%)×30%=18%。

  所以接受B的概率为24%+18%=42%。

  分析清楚B之后,再来看C,想要接受C可以是④也可以是⑤,分类关系,故接受C的概率为④⑤概率的和。

  在④中,AB都接受,再接受C,分步关系,概率应相乘;AB都不接受其实就是不接受A并且不接受B,概率为60%×(1-30%)=42%,所以④发生的概率为42%×90%=37.8%。

  在⑤中,AB至少接受一个即为AB都接受的反面,概率为1-42%=58%,此时接受C的概率为10%,故⑤发生的概率为58%×10%=5.8%。

  那么接受C的概率就为37.8%+5.8%=43.6%。

  此时得出结论,C>B>A,选D选项。

  这道题目中我们分析计算概率的方式,用到了分类、分步中的加乘原理。只要分析清楚题干描述事件发生的方式,结合加乘就可以顺利计算出所求概率。值得注意的是,前提条件,概率能相加的前提是事件之间不交叉即分类关系,概率能相乘的前提是先后完成即分步关系。

2020陕西公务员考试书籍推荐

省考必做题库 枪如林八本套 省考6件套

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有